Artificial Neural Network-Based Prediction of Physical and Mechanical Properties of Concrete Containing Glass Aggregates

Author:

Maraqa FaroqORCID,Yasin Amjad A.,Al-Sahawneh Eid,Alomari Jamal,Al-Adwan Jamal,Al-Elwan Ahmad A.

Abstract

This comprehensive study analyzes the use of crushed glass as both fine and coarse aggregate in concrete, as well as the prediction accuracy of Artificial Neural Networks (ANN). The primary objectives are to understand the interactions between concrete’s constituents and to assess the accuracy of ANN models in predicting concrete’s mechanical and physical properties. This is achieved using a two-decade experimental results dataset of concrete’s compressive and tensile strengths, slump, density, and the corresponding mix design proportions, including waste glass aggregate. A series of 70 concrete samples were carefully built and tested, with compressive strengths varying from 12 to 71 MPa and glass aggregate percentages ranging from 0-100%. These samples served as the basis for the creation of an input dataset and ANN targets. The ANN model underwent intensive training, validation, testing, and statistical regression analysis. The ANN models are exceptionally accurate, with a continuously low error margin of roughly 2%, highlighting their usefulness in matching experimental and predicted results. Validation techniques highlight the models' dependability, with consistently high coefficients of determination (R-values), including 0.99484, demonstrating their robustness in replicating complicated concrete properties. The data analysis shows a unique pattern, with optimum glass aggregate percentages in the range of 10–20%. Beyond this range, there is a noticeable decline in concrete properties. Finally, the study confirms the efficacy of ANN in predictive modeling while also validating the potential of crushed glass to replace natural aggregates in concrete. Doi: 10.28991/CEJ-2024-010-05-018 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3