Abstract
This paper focuses on the experimental investigation designed to study the behavior of hybrid fiber-reinforced concrete (HFRC) beams under flexure and impact loading. The addition of fibers to concrete can improve a number of its properties. For optimal response, different types of fibers may be suitably combined to produce HFRC. Optimized combinations of different fiber types in concrete can produce a composite with better engineering properties than that with only one type. The study compared the mechanical properties of fresh and hardened HFRC, Steel Fiber Reinforced Concrete (SFRC), and conventional concrete to arrive at the optimum fiber content for improved behavior of concrete by testing 135 specimens. Subsequently, the behavior of steel fiber-reinforced concrete beams was investigated with and without fiber hybridization under flexural and impact loading, followed by a comparison of the results. Fiber hybridization was achieved by developing concrete containing a combination of steel and polypropylene fibers. Eighteen beam specimens of size 1650×200×150 mm were tested in the investigation. Test outcomes demonstrated that the inclusion of fibers in a hybrid form could ensure superior composite performance in terms of flexure and impact resistance when compared to the incorporation of a single type of fibers in reinforced concrete. Doi: 10.28991/CEJ-2022-08-03-010 Full Text: PDF
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献