Assessing the Wastewater Pollutants Retaining for a Soil Aquifer Treatment using Batch Column Experiments

Author:

Raji V. R.,Packialakshmi S.

Abstract

In this study, the Secondary Treated Waste-Water (STWW) to infiltrate through the soil matrix, hence eliminating the contaminants in the effluent. For this study, three types of soil, such as loamy sand, fine sand, and clayey soil, were subjected to two cycles of wetting and drying to assess the type of soil that removes the maximum contaminants under which cycle. At diverse locations, soil samples were collected and examined to determine the soil types. Likewise, STWW was collected from Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) and Perungudi Sewage Treatment Plant (PSTP) to illustrate the quality of water before Soil Aquifer Treatment (SAT). About 1.5 m in height and 8 mm in diameter of fabricated acrylic material columns are used for the soil aquifer treatment efficiency studies. Water quality parameters, namely pH, TDS, and turbidity, were monitored throughout the study. All the organic compounds present in water were reduced to a higher level only in the fine sand in the one-day wetting/drying cycle. pH was reduced from 8.55 to 7.5, TDS was reduced from 1580 mg/l to 850 mg/l, and Turbidity was reduced from 7.24 to 4.04 NTU. This proposed method is to minimize the amount of water pollution from the environment. It is an effective way to manage aquifer recharge (MAR). SAT is the easiest method, aquifer and/or soil-based treatment systems improve the effluent quality of wastewater by removing the trace elements in the aquifer during the recharge of groundwater. It is likewise attractive for technologically advanced as well as emerging countries, and it is supple enough to allow adaptation to home-grown requirements by uniting it with predictable natural or bringing about water and technologies of wastewater treatment. Doi: 10.28991/CEJ-2022-08-07-011 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3