Effect of Pumice Stone and Sugar Molasses on the Behavior of Reinforced Concrete One-Way Ribbed Slabs

Author:

Mohammed Tamara Amer,Kadhim Hayder Mohammed

Abstract

The world is currently heading towards sustainability by reducing the amount of concrete, thus reducing the total unit weight. Moreover, design construction requires materials with a higher strength-to-weight ratio. Ribbed slabs and lightweight concrete (LWC) are considered two leading sustainability facilities. This research developed an experimental study to evaluate the effects of concrete type, steel reinforcement ratio, the geometry of ribs, voiding ratio, and slab type on the structural behavior of one-way ribbed slabs. Eight of the one-way slabs were constructed using pumice stone and by-product material sugar molasses (SM), and one slab was constructed using gravel and SM. These slabs were tested under a static two-point load and simply supported until failure. The results showed that using SM with pumice stone instead of gravel led to high strength-lightweight concrete (HSLWC), with a cylinder compressive strength of 42.2 MPa and a density of 1943 kg/m3, which meets the requirements of HSLWC codes. Using HSLWC instead of high-strength normal-weight concrete (HSNWC) decreased the thermal conductivity by 43.55% and the unit weight by 19.31%. Moreover, the ultimate strength of the HSLWC one-way ribbed slab decreased by 17.70%. Overcoming this strength reduction necessitated increasing the steel reinforcement ratio of the ribs from 0.28 to 0.44% in the HSLWC ribbed slab. Changing the number of ribs at the same amount of HSLWC showed a minor effect on the strength capacity of slabs but showed an economic benefit. However, increasing the rib width to reduce the voiding ratio from 44 to 40% resulted in a greater improvement in structural efficiency (SE) of one-way ribbed slab than reducing it from 44 to 33%. Consequently, the optimum rib width was 120 mm. Moreover, using a ribbed slab instead of a solid slab of HSLWC at the same amount of concrete increased the ultimate strength by 130.37%, decreased deflection by 3.99%, and improved SE by 126.46%. Furthermore, experimental results of ultimate load were compared with the ACI 318-19 code design equation. Doi: 10.28991/CEJ-2022-08-02-011 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3