Assessing the Effect of GGBFS Content on Mechanical and Durability Properties of High-Strength Mortars

Author:

Ngo Si-Huy,Nguyen Ngoc-TanORCID,Nguyen Xuan-Hien

Abstract

As a large amount of steel is produced for the industrialization and modernization of Vietnam, a correspondingly large quantity of steel slag is also released annually. Besides, the demand for mortar is increasing due to urbanization, especially for the high-strength and durability mortar used for important constructions and structures in aggressive environmental areas. This study aims to carry out further research into high-strength mortars incorporating ground granulated blast furnace slag (GGBFS). The control mixture was designed with a water-to-binder ratio of 0.2, and the amount of silica fume used was equal to 25% of the total binder amount by mass. Four other mixtures were designed using GGBFS to substitute for 15, 30, 45, and 60% of cement by mass. The engineering properties of fresh and hardened mortars were comprehensively investigated, especially the durability properties. The microstructure of these mortars was also examined using scanning electron microscopy. Test results show that replacing 15 or 30% of cement with GGBFS yields an improvement in mortar's strength and durability properties. All the mortars in this study show excellent qualities with high strength, low water absorption, and high resistance to chloride attack. Moreover, the presence of GGBFS reduces the shrinkage of mortar caused by the drying process. Doi: 10.28991/CEJ-2022-08-05-07 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3