Implementation of a Degassing System at the MSW Landfill

Author:

Shkileva AnnaORCID

Abstract

Aitolo-Akarnania prefecture, western Greece, is an area with strong earthquakes and large active fault systems. The most, the second half of the 20th century was characterized for the world community by the aggravation of the environmental problem. Anthropogenic pollution of the environment with the growth of industrial and agricultural production, the growth of cities, the size of the population, the volume of their consumption clearly indicates that the world community is on the brink of an abyss. The destruction of forests, pollution of water bodies, degradation of soil, flora and fauna, the emergence of new diseases clearly shows that if urgent and drastic measures are not taken to save the environment, the life of future generations is problematic. In Russia, as in other countries of the world, the amount of solid household waste has been sharply increasing lately. Therefore, their processing and disposal is becoming an increasingly urgent problem that requires the adoption of complex solutions. At the same time, overcrowded and smoking landfills, as well as formed unauthorized landfills are the main sources of environmental pollution. Landfills of solid municipal waste not only cause an epidemiological hazard, but due to the anaerobic decomposition of organic waste, causing the formation of explosive biogas, become a powerful source of biological pollution. Biogas generated at MSW landfills in the process of decomposition has a toxic effect on living organisms, contributes to the outbreak of fires, and is a source of unpleasant odors. This problem must be solved by introducing a degassing system at municipal solid waste landfills already at the stage of their operation. The proposed degassing system at the MSW landfill is aimed at reducing the negative impact of biogas on the environment. Doi: 10.28991/cej-2021-03091706 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3