Fuzzy Analytical Hierarchy Processes for Damage State Assessment of Arch Masonry Bridge

Author:

Lallam Mostefa,Mammeri Abdelhamid,Djebli Abdelkader

Abstract

The present work proposes a fuzzy analytical hierarchy approach for decision making in the maintenance programming of masonry arch bridges. As a practical case, we propose to classify the degradation state of the Mohammadia masonry bridge. A large number of criteria and sub-criteria are combined to classify this type of bridges through visual inspections. The main criteria (level 1) considered in this work are the history of the bridge, the environmental conditions, the structural capacity and the professional involvement of the bridge. In addition, these criteria are subdivided into several sub-criteria (level 2) which are, in turn, subdivided into sub-criteria (level 3). Considering these criteria and sub-criteria, weights Wiare calculated by fuzzy geometric mean method of Buckley. Subsequently, expert scores were assigned to calculate the overall score CS reflecting the degradation of the considered infrastructure. Thereafter, the masonry arch bridges are classified respecting the French IQOA scoring system using the overall scores value CS. The proposed classification method gave similar results provided by an expert’s study realized previously as part of a national patrimony preservation policy. The obtained results are in good agreement, which makes this method an effective scientific tool for decision-making in view of prioritization of the maintenance after systematic inspection of masonry bridges such as the bridge studied in this work. Doi: 10.28991/cej-2021-03091770 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3