Numerical Modeling of Soil Erosion with Three Wall Laws at the Soil-Water Interface

Author:

El Assad Hatim,Kissi Benaissa,Hassan Rhanim,Angel Parron Vera Miguel,Dolores Rubio Cintas Maria,Chafik Guemimi,Kacem-Boureau Mariem

Abstract

In the area of civil engineering and especially hydraulic structures, we find multiple anomalies that weakens mechanical characteristics of dikes, one of the most common anomalies is erosion phenomenon specifically pipe flow erosion which causes major damage to dam structures. This phenomenon is caused by a hole which is the result of the high pressure of water that facilitate the soil migration between the two sides of the dam. It becomes only a question of time until the diameter of the hole expands and causes destruction of the dam structure. This problem pushed physicist to perform many tests to quantify erosion kinetics, one of the most used tests to have logical and trusted results is the HET (hole erosion test). Meanwhile there is not much research regarding the models that govern these types of tests. Objectives: In this paper we modeled the HET using modeling software based on the Navier Stokes equations, this model tackles also the singularity of the interface structure/water using wall laws for a flow turbulence. Methods/Analysis: The studied soil in this paper is a clay soil, clay soil has the property of containing water more than most other soils. Three wall laws were applied on the soil / water interface to calculate the erosion rate in order to avoid the rupture of such a structure. The modlisitation was made on the ANSYS software. Findings: In this work, two-dimensional modeling was carried of the soil.in contrast of the early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not uniform along the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole length. The previous study found that the wall laws have a significant impact on the wall-shear stress, which affects the erosion interface in the fluid/soil, particularly at the hole's extremes. Our experiment revealed that the degraded profile is not uniform. Doi: 10.28991/cej-2021-03091742 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3