Durability Assessment of Sustainable Mortar by Incorporating the Combination of Solid Wastes: An Experimental Study

Author:

Akhtar Mohammad Nadeem,Malkawi Dima A. Husein,Bani-Hani Khaldoon A.,Husein Malkawi Abdallah I.

Abstract

The excessive mining of high-quality river sand for cement sand mortar resulted in environmental impacts and ecological imbalances. The present study aims to produce sustainable mortar by combining solid waste such as desert sand, stone dust, and crumb rubber to fully replace river sand. In addition, replacing cement with silica fume helps reduce the environmental carbon footprint. The present research prepared three types of mortar mixes: natural dune sand mortar (M1), natural dune sand stone dust crumb rubber mortar (M2), and natural dune sand stone dust crumb rubber silica fume mortar (M3). The developed mortar samples were examined at ambient and elevated temperatures of 100°C, 200°C, and 300°C for 120 minutes. Furthermore, 3 cycles of 12 hours each at freezing temperature (-10° ± 2°C) and crushed ice cooling (0° to -5°C) were also tested. Results of the study showed an increment in compressive strength values in M1, M2, and M3 mortar mixes (up to 200°C). Later, an abrupt drop in the compressive strength was noticed at 300°C in all mixes M1, M2, and M3, respectively. The mix M3 combinations resist heating impacts and perform significantly better than other mixes M1 and M2. Also, M3 combinations resist the cooling effect better than M1 and M2. It can be concluded that the mortar mix M3 with desert sand, stone dust, crumb rubber, and silica fume combination is considered the best mix for both heating and cooling resistance. Hence, the developed sustainable mortar M3 combination can be utilized in all adverse weather conditions. Doi: 10.28991/CEJ-2023-09-11-09 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3