Effect of Sediment Feeding on Live-Bed Scour around Circular Bridge Piers

Author:

Gumgum Firat,Guney Mehmet Sukru

Abstract

The effect of sediment feeding was investigated in the case of live-bed scour around circular bridge piers under flood waves to provide contributions for future experimental procedures. Circular piers of three different diameters were tested in a long rectangular flume containing uniform sediment layer 25 cm thick, by generating 7 different triangular hydrographs with different durations ranging between 6 and 20 minutes and the peak discharges varying from 18 to 38 L/s. Experiments were first conducted without sediment feeding and total load was collected at predetermined time intervals. Then the same experiments were performed by feeding with the same amount of collected sediment. Time dependent scour depths were measured using UVP. Bed degradation was also determined by using an empirical equation existing in the literature. It was found that feeding with the rates equal to the transported ones did not significantly change the scour depth and total sediment load within the limits of the experiments. No significant bed degradation was observed, except at the upstream end. It was revealed that the sediment feeding may not be required in the experiments where temporal evolution of the scour depth is studied in a sufficiently long flume containing sufficient sediment. Doi: 10.28991/cej-2021-03091699 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of sacrificial piles on local scour around complex bridge piers;Ain Shams Engineering Journal;2024-02

2. Effects of Flow Unsteadiness on the Transport of Bimodal Bed Material;Turkish Journal of Civil Engineering;2023-11-01

3. Impact of T-Splitter on the Laminar Flow Field Around Cylinder Pier;Advances in Science and Technology Research Journal;2022-11-01

4. MODWT—random vector functional link for river-suspended sediment load prediction;Arabian Journal of Geosciences;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3