Comparison of Nondestructive Testing Method for Strength Prediction of Asphalt Concrete Material

Author:

Al-Mattarneh HashemORCID,Dahim Mohammed

Abstract

Concrete is one of the most common construction materials used in rigid pavement, bridges, roads, highways, and buildings. Compressive strength is one of the most important properties of concrete, which determines its quality. This study aims to present the use of a new surface dielectric method to estimate concrete compressive strength. Six concrete mixtures were produced with compressive strengths ranging from 30 to 60 MPa. Compressive strength and strength development were determined during 28 days of curing. All concrete mixes were tested using the ASTM standard. The dielectric properties, ultrasound velocity, and rebound number of all concrete mixes were also measured at each day of curing. The results obtained from the proposed dielectric method in predicting the compressive strength of concrete were compared with the rebound hammer and ultrasonic velocity that are frequently used to evaluate the compressive strength of concrete.  The dielectric method shows a higher square correlation coefficient than the other two methods. The results also indicate that combined more than one method of nondestructive techniques will lead to higher prediction and could help to reduce some errors associated with using a certain method alone. The result indicate that the finding of this study could lead to help in reducing the time of evaluating concrete during construction and could also provide tools for practicing engineer to take decision faster with more confidence level on quality of concrete. Doi: 10.28991/cej-2021-03091645 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile Surface Capacitive Electrode Sensor to Assess the Corrosion Vulnerability of Concrete Materials;2024 IEEE 30th International Conference on Telecommunications (ICT);2024-06-24

2. Enhancing the Electromagnetic Scattering Properties of Microwave Absorption Composite Materials;2024 IEEE 30th International Conference on Telecommunications (ICT);2024-06-24

3. Establishing an Innovative User-Friendly Expert System for Design of Mixing Ratios of Self-Compacting Concrete;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

4. Prediction Moisture Content and Strength of Wood Using Free-Space Microwave Transmission Line NDT;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

5. Development of permittivity sensor for advanced in situ testing and evaluation of building material;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3