Prediction of Compressive Strength of Self-Compacting Concrete (SCC) with Silica Fume Using Neural Networks Models

Author:

Serraye Mahmoud,Kenai SaidORCID,Boukhatem Bakhta

Abstract

Self-Compacting Concrete (SCC) is a relatively new type of concrete with high workability, high volume of paste and containing cement replacement materials such as slag, natural pozzolana and silica fume. Cement replacement materials provide a wide variety of benefits such as lower cost, reduced consumption of natural resources, reduced carbon dioxide emissions and improved fresh and hardened properties. SCC is used in many applications such as sections with congested reinforcement and high rise shear walls and there is a need for the prediction of the performance of SCC used. Artificial Neural networks (ANN) are widely used in civil engineering for the prediction of the performance of some engineering materials such as compressive strength and durability. However, currently, studies on SCC containing silica fume are very rare. In this paper, an artificial neural networks (ANN) model is developed to predict the compressive strength of SCC with silica fume using the Levenberg-Marquardt back propagation algorithm based on a database from 366 experimental studies. The model developed was correlated with a nonlinear relationship between the constituents (input) and the compressive strength of SCC (output). To evaluate the predictive ability and generalize the developed model, other researchers’ experimental results were compared with the model prediction and good agreements are found. A parametric study was conducted to study the sensitivity of the ANN proposed model to some parameters such as water/binder ratio and superplasticizer content. The model developed in this study can potentially be used for SCC compressive strength prediction with very acceptable results and a high correlation coefficient R2=0.93. The developed model is practical, easy to use and user friendly. Doi: 10.28991/cej-2021-03091642 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3