Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete

Author:

Wongpattanawut Woratid,Israngkura Na Ayudhya Borvorn

Abstract

Introducing defective sanitaryware porcelain as a low-calcium binder for geopolymer mix concrete was regarded as green concrete. Four alkali concentrations (8M, 10M, 12M, and 14M) mixes involving four initial curing temperatures (60°C, 75°C, 90°C, and 105°C) were investigated for porosity, rapid chloride penetration, compressive and abrasive resistance. Tests on geopolymer paste for consistency and initial and final setting times were also assessed. For all the mixes, consistency and setting time decreased with increased alkali concentration levels. An increment in curing temperature increased the setting time rate. Microstructural studies such as X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were carried out, and the results were presented. The compressive and abrasive resistance of the specimen performance increased with an increase in the initial curing temperature and alkali concentration level. Majorly, the mechanical strength of porcelain-based geopolymer specimens increased by increasing the alkali concentration level. Applying 105°C for the initial curing temperature to the specimen, compressive strength, abrasive resistance, and resistibility to chloride ingress of the specimen enhanced. At the 28-days curing period, the ultimate compressive strength was 68.03 N/mm2, the lowest weight loss from abrasive motion was 0.09%, and the lowest passing charge was 1,440.91 coulombs were recorded respectively. As a result, porcelain-based geopolymers required a high initial curing temperature and a high alkali concentration level. It was found that 14M porcelain-based specimens heated at 105°C curing temperature for 24 hours led to an eco-friendly concrete mix with prominent positive results for engineering properties. Doi: 10.28991/CEJ-2024-010-04-05 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3