Behavior of Fire-damaged RC Beams After Strengthening with Various Techniques

Author:

Elsheikh Asser,Alzamili Hadeal H.ORCID

Abstract

High temperatures during a fire can significantly degrade the structural capacity of concrete. However, in many cases, it is possible to restore and strengthen fire-damaged concrete rather than completely rebuild damaged structures. The study considered two types of concrete (normal 25 MPa and high-strength 65 MPa) with two types of strengthening techniques: carbon-fiber-reinforced polymers (CFRP) sheets with different thicknesses of 1.5 and 2.5 mm and slurry-infiltrated fibrous concrete (SIFCON) jacketing with different fiber sizes of 20 and 30 mm. The numerical simulations and analyses were conducted to capture the complex behavior of fire-damaged concrete members (beams). A fire-damaged concrete beam subjected to an extreme or critical fire Exposure time (2 hours) was evaluated and modified using a finite element simulation approach. The simulation process included three stages: the first, subjecting the concrete beam to thermal loading; the second, reflecting the fire distribution map to another model of applying mechanical loading; and the third, involving the application of strengthening to the damaged model. The results showed that the strengthening using CFRP with a thickness of 2.5 improved the load-carrying capacity compared with SIFCON in both types of concrete. 200% improvement for the normal-strength concrete beam and a 136% improvement for the high-strength concrete beam, compared to the damaged beams. Doi: 10.28991/CEJ-2024-010-01-012 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3