The Application of Neural Networks to Predict the Water Evaporation Percentage and the Plastic Shrinkage Size of Self-Compacting Concrete Structure

Author:

Nguyen Cuong H.,Tran Linh H.

Abstract

This article presents a solution using an artificial neural network and a neuro-fuzzy network to predict the rate of water evaporation and the size of the shrinkage of a self-compacting concrete mixture based on the concrete mixture parameters and the environment parameters. The concrete samples were mixed and measured at four different environmental conditions (i.e., humid, dry, hot with high humidity, and hot with low humidity), and two curing styles for the self-compacting concrete were measured. Data were collected for each sample at the time of mixing and pouring and every 60 minutes for the next ten hours to help create prediction models for the required parameters. A total of 528 samples were collected to create the training and testing data sets. The study proposed to use the classic Multi-Layer Perceptron and the modified Takaga-Sugeno-Kang neuro-fuzzy network to estimate the water evaporation rate and the shrinkage size of the concrete sample when using four inputs: the concrete water-to-binder ratio, environment temperature, relative humidity, and the time after pouring the concrete into the mold. Real-field experiments and numerical computations have shown that both of the models are good as parameter predictors, where low errors can be achieved. Both proposed networks achieved for testing results R2 bigger than 0.98, the mean of squared errors for water evaporation percentage was less than 1.43%, and the mean of squared errors for shrinkage sizes was less than 0.105 mm/m. The computation requirements of the two models in testing mode are also low, which can allow their easy use in practical applications. Doi: 10.28991/CEJ-2024-010-01-07 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3