Study of Regions of Homozygosity (ROH) Patterns to Evaluate the Use of Dogs’ Genome in Human Drug Development

Author:

Smieszek Sandra,Polymeropoulos Mihael H.

Abstract

Animals are used as preclinical models for human diseases in drug development. Dogs, especially, are used in preclinical research to support clinical safety evaluations during drug development. Comparisons of patterns of regions of homozygosity (ROH) and phenotypes between dogs and humans are not well known. We conducted a genome-wide homozygosity analysis (GWHA) on the human and dog genomes. We calculated ROH patterns across distinct human cohorts, including the Amish, the 1000 genomes, Vanda 1 k genomes, and the Alzheimer’s cohort. The Amish provided a large cohort of extended kinships, allowing for in-depth family-oriented analyses. The remaining human cohorts served as statistical references. We then calculated ROH across different dog breeds, with emphasis on the beagle—the preferred breed used in drug development. Out of five studied human cohorts, we reported the highest mean ROH in the Amish population. We calculated the extent of the genome covered by ROH (FROH) (human 3.2 Gb, dog 2.5 Gb). Overall, FROH differed significantly between the Amish and the 1000 genomes, and between the human and the beagle genomes. The mean FROHper 1 Mb was ~ 16 kb for Amish, ~ 0.6 kb for Vanda 1 k, and ~ 128 kb for beagles. This result demonstrated the highest degree of inbreeding in beagles, far above that of the Amish, one of the most inbred human populations. ROH can contribute to inbreeding depression if it contains deleterious variants that are fully or partially recessive. The differences in ROH characteristics between human and dog genomes question the applicability of dog models in preclinical research, especially when the goal is to gauge the subtle effects on the organism’s physiology produced by candidate therapeutic agents. Importantly, there are huge differences in a subset of ADME genes, specifically the cytochrome P450 family (CYPs), which constitute major enzymes involved in drug metabolism. We should use caution when generalizing from dog to human, even if human and beagle are relatively close species phylogenetically. Doi: 10.28991/HEF-SP2022-01-02 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3