A Multipurpose Collapsible Scaffold for Flat and Irregular Surfaces

Author:

De La Cruz Rosalie Grace S.ORCID

Abstract

The construction industry heavily relies on scaffolding to facilitate work at elevated heights. This study presents a new and innovative design for a collapsible, multifunctional scaffold that is suitable for both flat and irregular surfaces. The design of the scaffold was evaluated using a Likert scale survey, which revealed high acceptability across all evaluated categories. The scaffold was fabricated using a combination of steel and aluminum materials and designed using computer-aided design CAD software. The fabrication process, portability, performance, and safety of a prototype scaffold were thoroughly assessed. The evaluation methodology employed a Likert-scale questionnaire and a descriptive research approach. A total of 30 engineers, architects, and construction laborers participated in the evaluation, assessing four essential aspects of the scaffold. The results indicated a consistently high level of acceptability, with weighted mean scores ranging from 4.69 to 4.94 out of a maximum score of 5.0 in all categories. The design parameters of the scaffold, such as the footing mechanism and working platform design, were determined based on industry standards and the intended usage of the scaffold. However, this study did not include a sensitivity analysis to explore the impact of different parameter values on the scaffold's performance. This study introduces a collapsible, multifunctional scaffold that effectively addresses the limitations of traditional scaffolds by offering enhanced portability, safety, and adaptability to flat and irregular surfaces. The widespread adoption of this scaffold design is expected to have significant implications for the construction industry, improving productivity and safety in construction projects. Doi: 10.28991/CEJ-SP2023-09-09 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3