State of Charge Estimation of Lead Acid Battery using Neural Network for Advanced Renewable Energy Systems

Author:

Widjaja Ryo G.,Asrol Muhammad,Agustono Iwan,Djuana Endang,Harito Christian,Elwirehardja G. N.,Pardamean Bens,Gunawan Fergyanto E.,Pasang Tim,Speaks Derrick,Hossain Eklas,Budiman Arief S.

Abstract

The Solar Dryer Dome (SDD), an independent energy system equipped with Artificial Intelligence to support the drying process, has been developed. However, inaccurate state-of-charge (SOC) predictions in each battery cell resulted in the vulnerability of the battery to over-charging and over-discharging, which accelerated the battery performance degradation. This research aims to develop an accurate neural network model for predicting the SOC of battery-cell level. The model aims to maintain the battery cell balance under dynamic load applications. It is accompanied by a developed dashboard to monitor and provide crucial information for early maintenance of the battery in the SDD. The results show that the neural network estimates the SOC with the lowest MAE of 0.175, followed by the Random Forest and support vector machine methods with MAE of 0.223 and 0.259, respectively. A dashboard was developed to help farmers monitor batteries efficiently. This research contributes to battery-cell level SOC prediction and the dashboard for battery status monitoring. Doi: 10.28991/ESJ-2023-07-03-02 Full Text: PDF

Publisher

Ital Publication

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3