System Parameters Sensitivity Analysis of Ocean Thermal Energy Conversion

Author:

Rasgianti .,Adiputra Ristiyanto,Nugraha Ariyana D.,Sitanggang Ruly B.,Pandoe Wahyu W.,Aprijanto .,Yasunaga Takeshi,Santosa Muhammad A.

Abstract

Ocean Thermal Energy Conversion (OTEC) is a technology to harvest the solar energy stored in the ocean by utilizing the temperature difference between warm surface and cold deep seawater. Considering that the OTEC system works in a low-temperature range, the present paper assessed the technical resources comprehensively by acquiring in-situ thermocline data and conducting a sensitivity analysis of the system parameters. The in-situ temperature profile data were measured in the waters of North Bali, Indonesia. The temperature gradient data based on field measurements were then compared with the HYCOM consortium model. The data were then used as input in the OTEC power and efficiency estimation through a single-stage ranking cycle. The analysis was conducted by varying the type of working fluid, the performance of the heat exchanger, and the location to investigate how the system parameters influenced the power produced. Using an unusual combination of parameters made it difficult to analyze the resulting data multiple times. However, with reference-based analysis and the formulation of calculations, the sensitivity of each parameter could be assessed at both locations. As a result, the ammonia working fluid provided the highest net power output of the system but had the lowest efficiency of all working fluids. The heat exchanger performance in terms of net power and efficiency cannot be separated from the seawater mass flow requirement. This referred to the results where the heat exchanger with a temperature difference of 3°C before and after the seawater passed through the heat exchanger and produced the highest net power and efficiency. Additionally, the net power output reached its convergence level at a water depth of 400m for the Bungkulan site and 450m for Celukan Bawang, which was proportional to the thermocline tendency. Doi: 10.28991/ESJ-2024-08-02-04 Full Text: PDF

Publisher

Ital Publication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3