Fitting Multi-Layer Feed Forward Neural Network and Autoregressive Integrated Moving Average for Dhaka Stock Exchange Price Predicting

Author:

Rubi Maksuda Akter,Chowdhury Shanjida,Abdul Rahman Abdul Aziz,Meero Abdelrhman,Zayed Nurul Mohammad,Islam K. M. AnwarulORCID

Abstract

The stock market plays a vital role in the economic development of any country. Stock market performance can be measured by the market capitalization ratio as well as many other factors. The primary purpose of this study is to predict the movement of the stock market based on the total market capitalization of the Dhaka Stock Exchange (DSE) using autoregressive integrated moving average (ARIMA) models as well as artificial neural networks (ANN). The data set covers monthly time series data of total market capitalization from November 2001 to December 2018. This study also shows the best model for forecasting the movement of DSE market capitalization. The ARIMA (2,1,2) model is chosen from among the several ARIMA model combinations. From several artificial neural networks (ANN) models as a modern tool, a three-layer feed-forward topology using a backpropagation algorithm with five nodes in the hidden layer, one lag, and a learning rate equal to 0.01 is selected as the best model. Finally, these selected two models are compared based on the Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Theil’s U statistic. The results showed that the estimated error of ANN is less than the estimated error of the traditional method. Doi: 10.28991/ESJ-2022-06-05-09 Full Text: PDF

Publisher

Ital Publication

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoding Tomorrow’s Gold Prices: A Comparative Study of GRU and CNN-LSTM in the Iranian Market;2024 10th International Conference on Web Research (ICWR);2024-04-24

2. Research on Unmanned Artificial intelligence Based Financial Volatility Prediction in International Stock Market;2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2024-04-09

3. Establishment of an Improved Genetic and BP Hybrid Algorithm and Neural Network Economic Model;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

4. Autoregressive Integrated Moving Average Model for Time Series Analysis;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

5. A Comparative Study of Electricity Price Prediction and Deep Learning Models;Proceedings of the International Conference on Computer Vision and Deep Learning;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3