Stand up Against Bad Intended News: An Approach to Detect Fake News using Machine Learning

Author:

Fahad Nafiz,Michael Goh K. O.,Hossen Md. Ismail,Shahriar Shopnil K. M.,Mitu Israt Jahan,Alif Md. A. Hossain,Tee Connie

Abstract

The purpose of this approach is to find out the effects and efficiently detect fake news by using a publicly available dataset. However, it is difficult for human beings to judge an article's truthfulness manually, which is why This paper mainly wanted to cure the effect and to found out an automated fake news detection system with benchmark accuracy by using a machine learning classifier, which must be higher than other recent research works. In essence, this work’s target is to find out an efficient way to detect fake and real news, and it also the target is to compare with existing work where researchers used machine learning classifiers and deep learning architecture. The proposed approach depended on a systematic literature review and a publicly available dataset where 7796 news data are recorded with 50% real and 50% fake news. The best and benchmark accuracy is 93.61%, achieved by the Support Vector Machine (SVM) among the used Random Forest, Decision Tree, KNN, and Logistics Regression classifiers, and the achieved accuracy is better than the exciting recent research works. Moreover, fake news is detected, people are able to differentiate between fake or real news, and effects are cured when people used SVM. Doi: 10.28991/ESJ-2023-07-04-015 Full Text: PDF

Publisher

Ital Publication

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3