Risk of allergy and its immune phenotypes in children with MMP9 Q279R gene polymorphism

Author:

Starkova K.G., ,Dolgikh O.V.,Legostaeva T.A.,Ukhabov V.M., , ,

Abstract

Scientific research with its focus on allergic diseases relies on up-to-date molecular-genetic methods for identifying individual genetic variability; it seems an important stage in the implementation of programs with their aim to early detect and mitigate risks of such diseases. In this study, our aim was to identify features of immune regulation associated with Q279R MMP9 gene polymorphism (rs17576) and benzene contamination in biological media in children with allergic diseases. The test group included 33 children with allergic diseases; the reference group consisted of 40 relatively healthy children. CD-markers were identified with flow cytometry. Genotyping was performed with a real-time polymerase chain reaction. The research revealed elevated levels of total IgE, IL-4 and TNFalfa under elevated benzene contamination in biological media that were by 1.2–4.2 times higher in the examined children with allergic diseases than in the reference group (р = 0.006–0.03). Q279R MMP9 gene polymorphismin in children from the test group had authentically more frequent oc-currence of the GG and AG genotypes, by 1.7 times higher than in the reference group. This allows considering the allele G of the MMP9 gene as a sensitivity marker in children with allergic diseases (OR = 2.34; 95 % CI = 1.17–4.65). We established a growth by 2.8 times in total IgE level and greater IL-4 and TNFalfa expression, by 1.4 and 1.3 times accordingly, in carriers of the allele G against those carrying the homozygote AA genotype among the examined children with allergic diseases (р = 0.020–0.042). Logistic regression analysis established the adequacy of the dominant model (p = 0.01) and revealed a possible association between carriage of the AG and GG genotypes of Q279R MMP9 gene polymorphism and developing allergy (OR = 3.61; 95 % CI = 1.34–9.71). A risk of developing allergy combined with benzene contamination in biological media and gene polymorphism of matrix metalloproteinase MMP9 (rs17576) is by 2.1 times higher for the allele G carriers against the AA genotype carriers (RR = 2.08; 95 % CI = 1.13–3.83). This allows considering the allele G of the MMP9 Q279R gene as a sensitivity marker in children with allergic diseases.

Publisher

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Subject

Public Health, Environmental and Occupational Health,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3