Distribution of microarthropods across altitude and aspect in the sub-Antarctic: climate change implications for an isolated oceanic island

Author:

Hugo-Coetzee Elizabeth A.1,Le Roux Peter C.2

Affiliation:

1. National Museum, P.O. Box 266; Department of Zoology and Entomology, University of the Free State, Bloemfontein, 9301, University of Stellenbosch, Stellenbosch, 7602, South Africa

2. Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0083, South Africa

Abstract

Current climate change is altering the distribution of species across both broad and fine scales. Examining contemporary species distributions along altitudinal gradients is one approach to predicting species future distributions, as species occurrence patterns at cold, high altitudes are expected to resemble the species distribution patterns currently observed at warmer, lower altitudes if warming occurs. Strong changes in climate have been observed in the sub-Antarctic over the last 50 years, with a 1.5 °C increase in mean temperature and a c. 30% decrease in mean precipitation recorded on Marion Island. In this study, the distribution patterns of mites and springtails inhabiting the cushion-plant Azorella selago were studied on Marion Island. Mite and springtail species richness and springtail abundance were significantly higher on the western aspect of the island, possibly due to higher rainfall and greater cloud cover on the windward side of the island. Mite abundance did not differ between aspects of the island, which may be due to the higher desiccation tolerance of mites. Mite and springtail species richness and springtail abundance were significantly lower at high altitudes coinciding with lower temperatures and generally harsher environment at higher altitudes. Plant characteristics generally did not contribute to explaining species patterns, suggesting that at the island-scale abiotic variables, rather than biotic factors, appeared to be the more important determinants of community structure. Therefore, despite species responding individualistically, it is clear that a warmer and drier climate will dramatically change the microarthropod community structure within A. selago on Marion Island.

Publisher

Les Amis d'Acarologia

Subject

Insect Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3