Long-gap Filling Method for the Coastal Monitoring Data

Author:

Cho Hong-Yeon,Lee Gi-Seop,Lee Uk-Jae

Abstract

Technique for the long-gap filling that occur frequently in ocean monitoring data is developed. The method estimates the unknown values of the long-gap by the summation of the estimated trend and selected residual components of the given missing intervals. The method was used to impute the data of the long-term missing interval of about 1 month, such as temperature and water temperature of the Ulleungdo ocean buoy data. The imputed data showed differences depending on the monitoring parameters, but it was found that the variation pattern was appropriately reproduced. Although this method causes bias and variance errors due to trend and residual components estimation, it was found that the bias error of statistical measure estimation due to long-term missing is greatly reduced. The mean, and the 90% confidence intervals of the gap-filling model’s RMS errors are 0.93 and 0.35~1.95, respectively.

Funder

National Institute of Fisheries Science

Publisher

Korean Society of Coastal and Ocean Engineers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3