Drivers of annual suspended sediment and nutrient yields in tributaries to Lake Erie

Author:

Johnson L. T.1,Manning N.1,Dezse J.1,Boehler J.1,Clark E.1,Fulton T.1,Miller N.1,Roerdink A.1

Affiliation:

1. National Center for Water Quality Research, Heidelberg University, 310 E. Market St., Tiffin, OH, 44883

Abstract

Abstract In the early 2000s, harmful algal blooms and hypoxia returned to Lake Erie following a period of ecosystem recovery from the late 1980s through the 1990s. This corresponds to a drastic increase in dissolved reactive phosphorus loads and flow-weighted mean concentrations in the major tributaries to the Western Lake Erie Basin. However, there is substantial variability in suspended sediment and nutrient yields across Lake Erie tributaries. It is well known that agricultural and urban land uses lead to increased watershed sediment and nutrient yields, especially in the absence of proper management practices. Yet attributes such as watershed soil types and slope can also affect yields. We examined the influence of watershed land use, hydrology, soil type, and slope on annual nutrient and sediment yields from tributaries to Lake Erie monitored as part of the Heidelberg Tributary Loading Program. A minimum of one sample and, during storm runoff, up to three samples a day are analyzed for all major nutrients and suspended sediments. The 5-year average annual yields across these watersheds exhibited distinct geographic patterns from west to east, with high suspended sediment but lower nutrient yields from the eastern most tributaries (Cuyahoga, Old Woman Creek, Huron) and the lowest sediment along with lower nutrient yields from the western most tributaries (Raisin, Tiffin, Lost). The Maumee, Portage, Sandusky, along with select subwatersheds tended to have intermediate sediment yields with high nutrient yields. Altogether, the % cultivated crops and poorly drained soil in the watershed increased nutrient yields whereas a higher % slope and lower % pasture increased sediment yields. These patterns highlighted unique regional differences that can help guide management decisions for these watersheds that ultimately would improve the health of Lake Erie.

Publisher

Michigan State University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3