Sol-gel Synthesis of CaZnAl2O4 Ceramic Nanoparticles and Investigation of their Properties

Author:

Didde Sekhar, ,R. S. Dubey,Panda Sampad Kumar, ,

Abstract

Dielectric ceramic materials are well-recognized in the semiconductor industry because of their exceptional thermal stability, chemical resistance, and crystallinity. Despite their potential applications, these are also demanded in wireless communication. This paper reports the structural, morphological, and dielectric properties of sol-gel-derived CaZnAl2O4 ceramic nanoparticles. X-ray diffraction (XRD) analysis exhibited the polycrystalline characteristic of the CaZnAl2O4 nanoparticles with their crystallite size of 13 nm. Fourier-Transform infrared spectroscopy (FTIR) analysis confirmed the relevant vibration peaks of various functional groups present in the ceramic nanoparticles. Surface morphology study demonstrated the preparation of spherical grains with their mean diameter of 16 nm. The concentric rings also confirm the crystallinity of the nanoparticles that appeared in the selected area diffraction pattern. Furthermore, dielectric properties investigation showed the variation of dielectric permittivity from 23.76 to 21.67 as a function of increased frequency. Similarly, the dielectric loss is found to decrease from 0.047 to 0.039. As a result, the conductivity increased from 1.324 μS/m to 3.639 μS/m as a function of applied frequency.

Publisher

Elsevier BV

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3