Modeling of thermodynamic properties of Fe-Ni-C, Fe-Cr-C alloys using computational approach
-
Published:2022-09-14
Issue:
Volume:
Page:
-
ISSN:2307-4108
-
Container-title:Kuwait Journal of Science
-
language:
-
Short-container-title:KJS publishes peer-review articles in Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry, and Earth & Environmental Sciences.
Author:
Shah Waseem Ullah, ,khan Dil Faraz,Jan Saeed Ullah,yin Haiqing, , ,
Abstract
The paper shows the thermodynamic properties of alloys Fe-Cr-C, Fe-Ni-C system using modeling and simulation approach. The thermo-calc software with databases is utilized for calculations and results. The calculation shows alloying at (1900K-2000K) temperature range. The atmospheric pressure is kept constant 106 Pascal. The active phase at 1900K is liquid phase with 1.00 mass % for C compositions. The total Gibbs energy is found decreasing in the Fe-Ni-C system, which shows the stability of the system. The solubility of Cr is found less than the solubility of Ni in the Fe-C system as investigated during activities simulations. The enthalpy and entropy of the system is found of the near linear relation with temperature raise and coupling properties of the alloying.BCC of entropy is more responsive than BCC of enthalpy during alloying. The Fe-Ni-C shows negative deviations from Raoults law and corresponding positive deviations from vegard’s and Henry law. The withstanding phase is graphite with highest thermal expansion coefficient. The highest T-zero fluctuations is noted in the Fe-Cr-C system. The alloy shows the less solubility of the carbon at low temperature, while results the great alloying at higher temperature in the Fe-Ni-C system better industrial aspects.
Subject
Multidisciplinary