Quantum behaved Intelligent Variant of Gravitational Search Algorithm with Deep Neural Networks for Human Activity Recognition

Author:

Jindal Sonika, ,Sachdeva Monika,Kushwaha Alok K. S., ,

Abstract

Human activity recognition (HAR) encompasses the detection of daily routine activities to advance usability in detecting crime and preventing dangerous activities. The recognition of activities from videos and image sequences with higher exactitude is a major challenge due to system complexities. The efficient feature optimization approach can reduce system complexities by removing ineffective features, which also improves the activity recognition performance. This research work presents a novel quantum behaved intelligent gravitational search algorithm to optimize the features for human activity recognition. The proposed intelligent variant is termed as INQGSA, which optimizes the features by using the advantageous attributes of quantum computing (QC) and intelligent gravitational search algorithm (INGSA). In INQGSA, the intelligent factor avoids the trapping of mass agents in later iterations by using the information of the best and worst agents to update the position of agents. The addition of quantum computing based attributes (such as quantum bits, their superposition, and quantum gates, etc.) ensures a better diversity of discrete optimized features. To analyze the superiority of INQGSA, the feature optimization is also conducted with the gravitational search algorithm (GSA) and the quantum-inspired binary gravitational search algorithm (QBGSA). Finally, the optimized selected features are utilized by the deep neural networks (DNN) of ResNet-50V2 and ResNet-101V2 for the classification of activities. The activity recognition experiments are conducted on the UCF101 and HMDB51 datasets. The performance comparison of the proposed HAR system with state-of-the-art techniques signifies that the proposed system is superior and effective in detecting the different activities.

Publisher

Elsevier BV

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3