Selective adsorption of cationic dye utilizing poly(methacrylic acid-co-ethylene dimethacrylate) monolith from wastewater

Author:

D’Cruz Bessy,Amin Mohamed O.,Madkour Metwally,Al-Hetlani Entesar,

Abstract

In this study, poly(methacrylic acid-co-ethylene dimethacrylate (poly(MAA-co-EDMA)) monolith was prepared for the selective adsorption of acidic dye, namely methylene blue (MB), from wastewater. The fabrication of the monolith was carried out by photoinitiation polymerization by irradiating a mixture of methacrylic acid (MAA), ethylene dimethacrylate (EDMA), porogenic solvents and an initiator. Batch adsorption assays were performed to examine the impact of monolith dosage and initial dye concentration on the adsorption capacity and efficiency of the monolith towards MB dye molecules. This adsorption kinetic study revealed that MB adsorption on the monolith followed pseudo-second-order model and equilibrium adsorption behavior was best modeled by Langmuir adsorption isotherm indicating a monolayer adsorption with a maximum adsorption capacity of 50.00 mg g-1. Owing to the presence of negative binding sites on the monolith surface, cationic MB molecules are selectively adsorbed from MB/methyl orange (MO) mixture with an adsorption efficiency of 99.54% at equilibrium time. Moreover, the MB adsorbed monolith was regenerated up to four cycles and the percentage removal efficiency of MB on the monolith dropped to 67.64 % after the fourth cycle. Finally, the monolith effectively adsorbed MB from the tap water in presence of competing ions and the maximum adsorptive capacity obtained was 47.62 mg g-1 with 84.5% adsorption efficiency. Hence, poly(MAA-co- EDMA) monolith is an adequate sorbent for the treatment of cationic dyes in the presence of other dyes and competing ions from wastewater.

Publisher

Kuwait Journal of Science

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3