Thermally driven structural phase transformation and dislocation density of CdS nanoparticles precipitated without surfactant in KOH alkaline medium

Author:

Sheng Chan Kok, ,Alrababah Yousef Mohammad,

Abstract

The present research demonstrates a detailed discussion for the effect of annealing temperature on the structural transformation and surface morphology of the CdS nanoparticles synthesized using the precipitation method without surfactant in KOH alkaline medium. The annealing temperature used was in the range of 160 – 480 oC. The samples structural, functional group and morphological properties were investigated by using XRD, FTIR and SEM techniques. XRD analysis reveals that the CdS has gradually been transformed from the pure cubic to hexagonal polycrystalline structure as well as improved crystallinity upon increasing the temperature. Besides, the parameters of average crystallite size and dislocation density were calculated using the established Debye- Scherrer equation. The average crystallite size was in nano-dimension and increases gradually with temperature. The FTIR spectra indicate that the characteristic vibration band of CdS emerged in the lower wavenumber region of 650 and 500 cm-1, and the band becomes stronger as the temperature rises. Also, the SEM images demonstrate that the CdS exhibits uniform spherical morphology and the particle size grows larger at elevated temperatures. The improved crystallinity and structural properties tuning ability against temperature allows beneficial optical applications as solar cells, photocatalysts, non-linear optics, light emitting diodes and optoelectronic devices.

Publisher

Kuwait Journal of Science

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3