Data Analysis and Forecasting of COVID-19 Pandemic in Kuwait Based on Daily Observation and Basic Reproduction Number Dynamics

Author:

Oshinubi Kayode, ,Al-Awadhi Fahimah,Rachdi Mustapha,Demongeot Jacques, , , ,

Abstract

Coronavirus (COVID-19) has continued to be a global threat to public health. When the coronavirus pandemic began early in 2020, experts wondered if there would be waves of cases, a pattern seen in other virus pandemics. The overall pattern so far has been one of increasing cases of COVID-19 followed by a decline, and we observed a second wave of increased cases and yet we are still exploring this pandemic. Hence, updating the prediction model for the new cases of COVID-19 for different waves is essential to monitor the spreading of the virus and control the disease. Time series models have extensively been considered as the convenient methods to predict the prevalence or spreading rate of the disease. This study, therefore, aimed to apply the Autoregressive Integrated Moving Average (ARIMA) modelling approach for predicting new cases of coronavirus (COVID-19). We propose a deterministic method to predict the basic reproduction number Ro of first and second wave transition of COVID-19 cases in Kuwait and also to forecast the daily new cases and deaths of the pandemic in the country. Forecasting has been done using ARIMA model, Exponential smoothing model, Holt’s method, Prophet forecasting model and machine learning models like log-linear, polynomial and support vector regressions. The results presented aligned with other methods used to predict Ro in first and second waves and the forecasting clearly shows the trend of the pandemic in Kuwait. The deterministic prediction of Ro is a good forecasting tool available during the exponential phase of the contagion, which shows an increasing trend during the beginning of the first and second waves of the pandemic in Kuwait. The results show that support vector regression has achieved the best performance for prediction while a simple exponential model without trend gives good optimal results for forecasting of Kuwait COVID-19 data.

Publisher

Kuwait Journal of Science

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3