Comparative evaluation of precipitation-temperature based drought indices (DIs): A case study of Moroccan Lower Sebou basin

Author:

HAKAM Oualid, ,BAALI Abdennasser,EL KAMEL Touria,Youssra Ahouach,Azennoud Khalil, , , ,

Abstract

Due to the lack of studies on drought in the Lower Sebou basin (LSB), the complexity of drought event and the difference in climate conditions. The identification of the most appropriate drought indices (DIs) to assess drought conditions has become a priority. Therefore, assessing the performance of different drought indices was considered in order to identify the universal drought indices that are well adapted to the LSB. Based on data availability, five DIs were used: Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration Index (SPEI), Reconnaissance Drought Index (RDI), self-calibrated Palmer Drought Severity Index (sc-PDSI) and Streamflow Drought Index (SDI). The DIs were calculated on an annual scale using monthly time series of precipitation, temperature and river flow from 1984-2016. Thornthwaite's method was used to calculate potential evapotranspiration (PET). Pearson's correlation (r) were analyzed. Furthermore, five decision criteria namely robustness, traceability, transparency, sophistication and scalability were used to evaluate the performance of these indices. The results proved the fact that SPI is suitable to detect the drought duration and intensity compared to other indices with high correlation coefficients especially in sub humid regions, knowing that it tends to give more results that are humid in stations with semi-arid climates. SPI, SPEI and RDI follow the same trend during the period studied. However, sc-PDSI appears to be the most sensitive to temperature and precipitation by overestimating the drought conditions. Eventually, the results of the performance evaluation criteria revealed that SPEI classified first (total score = 137) among other meteorological drought indices, followed by SPI, RDI and sc-PDSI.

Publisher

Kuwait Journal of Science

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3