Abstract
UDC 517.5
By using a generalized symmetric difference
Δ
h
m
of order
m
and step
h
>
0
,
we obtain an analog of the Titchmarsh theorems [Introduction to the theory of Fourier integrals, Oxford Univ. Press (1948)] (Theorems 84 and 85) for the deformed Hankel transform. We also provide a further extension of the theorem cited above for functions in
L
k
p
with an abstract deformed Hankel – Dini – Lipschitz condition.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference8 articles.
1. S. Ben Saïd, A product formula and convolution structure for a $k$-Hankel transform on $R$, J. Math. Anal. and Appl., 463, № 2, 1132 – 1146 (2018), https://doi.org/10.1016/j.jmaa.2018.03.073
2. Salem Ben Sad, Mohamed Amine Boubatra, Mohamed Sifi, On the deformed Besov – Hankel spaces, Opuscula Math., 40, № 2, 171 – 207 (2020); https://doi.org/10.7494/OpMath.2020.40.2.171
3. A. Achak, R. Daher, L. Dhaouadi, El Loualid, An analog of Titchmarsh’s theorem for the $q$-Bessel transform, Ann. Univ. Ferrara, 65, № 113 (2019); https://doi.org/10.1007/s11565-018-0309-3
4. R. Daher, M. Hamma, An analog of Titchmarsh’s theorem of Jacobi transform, Int. J. Math. Anal., 6, № 20, 975 – 981 (2012).
5. R. Daher, M. El Hamma, A. El Houasni, Titchmarsh’s theorem for the Bessel transform, Matematika, 28, № 2, 127 – 131 (2012); https://doi.org/10.11113/matematika.v28.n.567
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献