Abstract
UDC 519.21
Distribution of a Brownian motion conditioned to start from the boundary of an open set and to stay in for a finite period of time is studied. Characterizations of such distributions in terms of certain singular stochastic differential equations are obtained. Results are applied to the study of boundaries of clusters in some coalescing stochastic flows on
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference19 articles.
1. R. Garbit, Brownian motion conditioned to stay in a cone, J. Math. Kyoto Univ., 49, No. 3, 573 – 592 (2009), https://doi.org/10.1215/kjm/1260975039
2. Y. Le Jan, O. Raimond, Flows, coalescence and noise, Ann. Probab., 32, No. 2, 1247 – 1315 (2004), https://doi.org/10.1214/009117904000000207
3. G. V. Riabov, Random dynamical systems generated by coalescing stochastic flows on $R$, Stoch. and Dyn., 18, No. 04, Article 185003, 24 pp. (2018), https://doi.org/10.1142/S0219493718500314
4. G. V. Riabov, Duality for coalescing stochastic flows on the real line, Theory Stoch. Process., 23, No. 2, 55 – 74 (2018)
5. A. A. Dorogovtsev, G. V. Riabov, B. Schmalfuß, Stationary points in coalescing stochastic flows on $mathbb{R}$, Stoch. Process. and Appl., 130, No. 8, 4910 – 4926 (2020), https://doi.org/10.1016/j.spa.2020.02.005