Author:
Jeribi Aref,Mahfoudhi Kamel
Abstract
UDC 517.5
We derive some results concerning the quaternionic Davis–Wielandt shell for a bounded right linear operator in a right quaternionic Hilbert space. The relations between the geometric properties of the quaternionic Davis–Wielandt shells and the algebraic properties of quaternionic operators are obtained.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference12 articles.
1. D. Alpay, F. Colombo, D. P. Kimsey, The spectral theorem for quaternionic unbounded normal operators based on the $S$-spectrum, J. Math. Phys., 57, № 2, Article 023503 (2016).
2. M. T. Chien, H. Nakazato, Davis–Wielandt shell and $q$-numerical range, Linear Algebra and Appl., 340, 15–31 (2002).
3. C. Davis, The shell of a Hilbert-space operator. II, Acta Sci. Math (Szeged), 31, 301–318 (1970).
4. F. Colombo, G. Gentili, I. Sabadini, D. C. Struppa, Non commutative functional calculus, bounded operators, Complex Anal. and Oper. Theory, 4, № 4, 821–843 (2010).
5. F. Colombo, I. Sabadini, On the formulations of the quaternionic functional calculus, J. Geom. and Phys., 60, № 10, 1490–1508 (2010).