Обернена спектральна задача для зіркового графу зі стільтьєсівських струн із заданими кількостями мас на ребрах

Author:

Pivovarchik V.ORCID,Dudko A.ORCID

Abstract

УДК 519.177 Розглянуто спектральну задачу для зiркового графа зi стiльтьєсiвських струн. У центральнiй вершинi накладено узагальненi умови Неймана. Всi висячi вершини, крiм однiєї (кореня), закрiплено. Ми розглядаємо двi задачi: 1) з умовою Неймана у коренi (задача Неймана), 2) з умовою Дiрiхле у коренi (задача Дiрiхле). У [V. Pivovarchik, N. Rozhenko, C. Tretter, <em>Dirichlet – Neumann inverse spectral problem for a star graph of Stieltjes strings</em>, Linear Algebra and Appl., <strong>439</strong>, № 8, 2263 – 2292 (2013)] описано спектри таких задач i розв’язано вiдповiдну обернену задачу вiдновлення величин мас i довжин iнтервалiв мiж ними виходячи зi спектрiв двох задач (Неймана i Дiрiхле). На вiдмiну вiд вказаних результатiв ми розв’язуємо обернену задачу, в якiй кiлькостi мас на ребрах задано, та знаходимо умови на двi послiдовностi дiйсних чисел, необхiднi та достатнi, щоб вони були спектрами задач Дiрiхле та Неймана для зiркового графа з заданими кiлькостями точкових мас та заданими довжинами ребер.

Publisher

Institute of Mathematics National Academy of Sciences of Ukraine

Reference16 articles.

1. O. Boyko, O. Martynyuk, V. Pivovarchik, On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph, Methods Funct. Anal. and Topology, 25, № 2, 104 – 117 (2019).

2. O. Boyko, V. Pivovarchik, Inverse spectral problem for a star graph of Stieltjes strings, Methods Funct. Anal. and Topology, 14, № 2, 159 – 167 (2008).

3. J. Genin, J. S. Maybee, Mechanical vibrations trees, J. Math. Anal. and Appl., 45, 746 – 763 (1974), https://doi.org/10.1016/0022-247X(74)90065-1

4. G. Gladwell, Inverse problems in vibration, Kluwer Acad. Publ., Dordrecht (2004).

5. G. Gladwell, A. Morass, Matrix inverse eigenvalue problems, Dynamical Inverse Problems: Theory and Appl., 529, 1 – 29 (2011), https://doi.org/10.1007/978-3-7091-0696-9_1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3