Abstract
UDC 517.5
Let be a doubly connected domain bounded by two rectifiable Carleson curves. In this work, we use the higher modulus of smoothness in order to investigate the approximation properties of -Faber–Laurent rational functions in the subclass of weighted generalized grand Smirnov classes of analytic functions.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference34 articles.
1. A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51, № 2, 131 – 148 (2000).
2. A. I. Markushevich, Analytic function Theory, vols I and II, Nauka, Moscow (1968).
3. A. Kinj, M. Ali, S. Mahmoud, Approximation by rational functions in Smirnov classes with variable exponent, Arab. J. Math., 37, № 1, 79 – 86 (2017), https://doi.org/10.1007/s40065-017-0164-6
4. D. Gaier, Lectures on complex approximation, Boston-Stuttgart; Birkh¨auser-Verlag (1987).
5. D. M. Israfilov, Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^p(G, omega )$ and the Bieberbach polynomials, Constr. Approx., 17, 335 – 351 (2001), https://doi.org/10.1007/s003650010030