Abstract
UDC 517.5We obtain new recurrence relations, an explicit formula, and convolution identities for higher order geometric polynomials. These relations generalize known results for geometric polynomials, and lead to congruences for higher order geometric polynomials, particularly for -Bernoulli numbers.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference32 articles.
1. C. Ahlbach, J. Usatine, N. Pippenger, Barred preferential arrangement, Electron. J. Combin., 20, № 2, 1 – 18 (2013); https://doi.org/10.37236/2482
2. A. A. Asgari, M. Jahangiri, On the periodicity problem of residual $r$-Fubini sequences, J. Integer Seq. 21, Article 18.4.5 (2018).
3. A. Z. Broder, The $r$-Stirling numbers, Discrete Math., 49, 241 – 259 (1984); https://doi.org/10.1016/0012-365X(84)90161-4
4. K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. and Math. Sci., 2005, № 23, 3849 – 3866 (2005); https://doi.org/10.1155/IJMMS.2005.3849
5. K. N. Boyadzhiev, Apostol – Bernoulli functions, derivative polynomials and Eulerian polynomials, Adv. Appl. Discrete Math., 1, № 2, 109 – 122 (2008).