Abstract
UDC 517.5
We introduce a
(
p
,
q
)
-analogue of the poly-Euler polynomials and numbers by using the
(
p
,
q
)
-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We give several combinatorial identities and properties of these new polynomials, and also show some relations with
(
p
,
q
)
-poly-Bernoulli polynomials and
(
p
,
q
)
-poly-Cauchy polynomials. The
(
p
,
q
)
-analogues generalize the well-known concept of the
q
-analogue.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference40 articles.
1. Andrews, George E.; Askey, Richard; Roy, Ranjan. Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. xvi+664 pp. ISBN: 0-521-62321-9; 0-521-78988-5 https://doi.org/10.1017/CBO9781107325937
2. Araci, Serkan; Duran, Ugur; Acikgoz, Mehmet. $(rho,q)$-Volkenborn integration. J. Number Theory. 171, 18--30 (2017). https://doi.org/10.1016/j.jnt.2016.07.019
3. Bayad, Abdelmejid; Hamahata, Yoshinori. Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65, no. 1, 15--24 (2011). https://doi.org/10.2206/kyushujm.65.15
4. Brewbaker, Chad. A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues. Integers. 8, A02 (2008), 9 pp.http://emis.matem.unam.mx/journals/INTEGERS/papers/i2/i2.pdf
5. Burban, Ivan M.; Klimyk, Anatoli U. $P,Q$-differentiation, $P,Q$-integration, and $P,Q$-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 2, no. 1, 15--36 (1994). https://doi.org/10.1080/10652469408819035