Abstract
UDC 519.21
We study an important class of stochastic nonlinear evolution problems with pseudomonotone elliptic parts and establish the existence of probabilistic weak (or martingale) solutions. No solvability theory has been developed so far for these equations despite numerous works involving various generalizations of the monotonicity condition. Key to our work is a sign result for the Ito differential of an approximate solution that we establish, as well as several compactness results of the analytic and probabilistic nature, and a characterization of pseudomonotone operators due to F. E. Browder.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference41 articles.
1. A. Bensoussan, Some existence results for stochastic partial differential equations, Stoch. Partial Different. Equat. and Appl. (Trento, 1990), 268, 37 – 53 (1992).
2. A. Bensoussan, Stochastic Navier – Stokes equations, Acta Appl. Math., 38, № 3, 267 – 304 (1995), https://doi.org/10.1007/BF00996149
3. A. Bensoussan, R. Temam, Équations stochastiques du type Navier-Stokes. (French), J. Funct. Anal., 13, № 1, 195 – 222 (1973), https://doi.org/10.1016/0022-1236(73)90045-1
4. A. Bensoussan, R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I (French), Israel J. Math., 11, № 1, 95 – 129 (1972), https://doi.org/10.1007/BF02761449
5. H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité (French), Ann. Inst. Fourier (Grenoble), 18, 115 – 175 (1968).