Abstract
UDC 517.9
We consider the Cauchy problem for an evolution equation modeling bidirectional surface waves in a convecting fluid. We study the existence, uniqueness, and asymptotic properties of global solutions to the initial value problem associated withthis equation in . We obtain some polynomial decay estimates of the energy.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference19 articles.
1. R. A. Adams, J. J. F. Fournier, Sobolev spaces, Mathematics, 140, Acad. Press, New York (1975).
2. H. Brezis, T. Cazenave, Nonlinear evolution equations, Univ. Pierre et Marie Curie (1994).
3. P. Coullet, S. Fauve, Propagative phase dynamics for systems with Galilean invariance, Phys. Rev. Lett., 55, 2857 – 2859 (1985).
4. C. R. da Luz, R. C. Charao, ˜Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Different. Equat., 6, no. 2, 269 – 294 (2009), https://doi.org/10.1142/S0219891609001824
5. E. B. Davis, A. M. Hinz, Explicit constants for Rellich inequalities in $L_p(Omega)$, Math. Z., 227, 511 – 523 (1998), https://doi.org/10.1007/PL00004389