Abstract
UDC 517.5
We prove a uniqueness theorem of linearly nondegenerate holomorphic mappings from annulus to complex projective space with different multiple values and a general condition on the intersections of the inverse images of these hyperplanes.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference9 articles.
1. T. B. Cao, Z. S. Deng, On the uniqueness of meromorphic functions that share three or two finite sets on annuli, Proc. Indian Acad. Sci., 122, No 2, 203 – 220 (2012), https://doi.org/10.1007/s12044-012-0074-7
2. Z. Chen, Q. Yan, Uniqueness theorem of meromorphic mappings into $Bbb P^N(Bbb C)$ sharing $2N+3$ hyperplanes regardless of multiplicities, Internat. J. Math., 20, 717 – 726 (2009), https://doi.org/10.1142/S0129167X09005492
3. H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58, 1 – 23 (1975).
4. H. H. Giang, L. N. Quynh, S. D. Quang, Uniqueness theorems for meromorphic mappings sharing few hyperplanes, J. Math. Anal. and Appl., 393, 445 – 456 (2012), https://doi.org/10.1016/j.jmaa.2012.03.049
5. A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli, I, Mat. Stud., 23, № 01, 19 – 30 (2005).