Abstract
UDC 517.5
The paper deals with solving the integral equation with a generalized Mittag-Leffler function
E
α
,
β
γ
,
q
(
z
)
that defines a kernel using a fractional integral operator. The existence of the solution is justified and necessary conditions on the integral equation admiting a solution are discussed. Also, the solution of the integral equation is derived.
Publisher
Institute of Mathematics National Academy of Sciences of Ukraine
Reference17 articles.
1. Desai, R.; Salehbhai, I. A.; Shukla, A. K. Note on generalized Mittag-Leffler function. SpringerPlus 5, 683 (2016). https://doi.org/10.1186/s40064-016-2299-x
2. Kilbas, Anatoly A.; Saigo, Megumi. On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transform. Spec. Funct. 4 (1996), no. 4, 355–370. https://doi.org/10.1080/10652469608819121
3. Kilbas, Anatoly A.; Saigo, Megumi; Saxena, R. K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15 (2004), no. 1, 31–49. https://doi.org/10.1080/10652460310001600717
4. Miller, Kenneth S.; Ross, Bertram. An introduction to the fractional calculus and fractional differential equations A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. xvi+366 pp. ISBN: 0-471-58884-9
5. Mittag-Leffler, G. Sur la nouvelle fonction $Ealpha (x)$, C. R. Acad. Sci. Paris, 137 (1903), 554–558.