Admissible integral manifolds for partial neutral functional-differential equations

Author:

Nguyen Thieu HuyORCID,Ha Vu Thi Ngoc,Yen Trinh Xuan

Abstract

UDC 517.9 We prove the existence and attraction property for admissible invariant unstable and center-unstable manifolds of admissible classes of solutions to the partial neutral functional-differential equation in Banach space X   of the form  & t F u t = A ( t ) F u t + f ( t , u t ) , t s , t , s , & u s = ϕ 𝒞 : = C ( [ - r ,0 ] , X )  under the conditions that the family of linear partial differential operators ( A ( t ) ) t generates the evolution family ( U ( t , s ) ) t s with an exponential dichotomy on the whole line ;   the difference operator  F : 𝒞 X is bounded and linear, and the nonlinear delay operator f satisfies the φ -Lipschitz condition, i.e.,  f ( t , ϕ ) - f ( t , ψ ) φ ( t ) ϕ - ψ 𝒞 for ϕ , ψ 𝒞 , where φ ( ) belongs to an admissible function space defined on .   We also prove that an unstable manifold of the admissible class attracts all other solutions with exponential rates.  Our main method is based on the Lyapunov – Perron equation combined with the admissibility of function spaces.  We  apply our results to the finite-delayed heat equation for a material with memory. 

Publisher

Institute of Mathematics National Academy of Sciences of Ukraine

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3