Abstract
UDC 514.763.2+515.164.17
We study the divergence of multivector fields on Banach manifolds with a Radon measure. We propose an infinite-dimensional version of divergence consistent with the classical divergence from finite-dimensional differential geometry. We then transfer certain natural properties of the divergence operator to the infinite-dimensional setting. Finally, we study the relation between the divergence operator on a manifold
M
and the divergence operator on a submanifold
S
⊂
M
.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference12 articles.
1. Yu. Bogdanskii, Banach manifolds with bounded structure and Gauss–Ostrogradskii formula, Ukr. Math. J., 64, № 10, 1299–1313 (2012).
2. Yu. Bogdanskii, Stokes' formula on Banach manifolds, Ukr. Math. J., 72, № 11, 1455–1468 (2020).
3. Yu. Bogdanskii, E. Moravetskaya, Surface measures on Banach manifolds with uniform structure, Ukr. Math. J., 69, № 8, 1030–1048 (2017).
4. Yu. Bogdanskii, A. Potapenko, Laplacian with respect to a measure on a Riemannian manifold and Dirichlet problem.~I, Ukr. Math. J., 68, № 7, 897–907 (2016).
5. N. Bourbaki, Éléments de mathématique. Algèbre, chap.~I-III, Hermann (1970); chap.~IV-VII, Masson (1981); chap.~VIII-X, Springer (2007, 2012).