Classification of Toxic Plants on Leaf Patterns Using Gray Level Co-Occurrence Matrix (GLCM) with Neural Network Method

Author:

Zuhri Mohammad Faishol,Maharani S. Kholidah Rahayu,Affandy Affandy,Nurhindarto Aris,Syukur Abdul,Soeleman Moch Arief

Abstract

Poisonous plants are plants that must be avoided and not consumed by humans, because the presence of poisonous plants is also often found in the surrounding environment without realizing it. Because of the lack of knowledge to classify poisonous plant species, it will be more difficult to find out. With the help of a computer system, it will be easier to identify the types of poisonous plants. There are 3 types of poisonous plants that will be used in this study, namely cassava, jatropha, and amethyst. There are also 3 types of non-toxic plants with almost the same morphology as a comparison, namely cassava, figs, and eggplant. In this study, researchers tried to classify poisonous plant species using leaf pattern features that would be extracted using shape features and Gray Level Co-occurrence Matrix (GLCM). The value taken from the shape feature is the values ​​of area, width, diameter, perimeter, slender, and round. While the value of contrast, entropy, correlation, energy, and homogeneity for Gray Level Co-occurrence Matrix (GLCM) attributes. To classify data using Neural Network with RapidMiner application. From this study, it is known that from 300 total datasets used, the highest accuracy is 96.13% using the Neural Network method. With an AUC value of 0.986 and is included in the very good category. 

Publisher

Universitas Nahdlatul Ulama Blitar

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Poisonous Plants Detection Using Machine Learning;International Journal of Advanced Research in Science, Communication and Technology;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3