Abstract
Research efforts for supercapacitor electrode materials have become increasingly important due to the high demand for long-lasting, high-performing and environmentally friendly portable energy storage devices. Graphene-based materials and their hybrids have been shown to be very promising candidates for meeting these requirements. This short review summarizes recent advances in the development of graphene derivatives and focuses in particular on materials derived from graphite fluoride. Covalent graphene derivatives belong to a progressive class of highly efficient materials with tailorable structural and physicochemical properties that can be adapted to meet specific capacitive charge storage requirements, and, thus, enhance the most effective development of the energy storage field.