Abstract
Nowadays, due to the scarcity of natural resources, there is more pressure on the reuse of materials and the application of circular economy principles. For this purpose, increasingly efficient and energy-saving technologies capable of extracting valuable raw materials from waste streams are needed, thus reducing energy and material dependence on primary resources. One such innovative technology is represented by membrane contactors, which enable mass sharing without the need for phase dispersion within each other, thus achieving lower operational and space requirements, as compared to conventional mass sharing devices (e.g. packed bed, tower column or stirred bed reactors). In addition, membrane contactors are very versatile and can be used not only for the recovery of valuable materials from waste streams in waste management processes (in particular recycling of metals or organics), but also as life-saving devices in biomedical applications (e.g. as extracorporeal blood oxygenation devices).