Comparative Study of Different High Voltage Switches Used in Pulsed High Voltage Application

Author:

Panda Sai Kiran,Mitra Sabyasachi,Mondal J.,Roy A.

Abstract

High-voltage switches play a crucial role in pulsed power applications, where the efficient and reliable control of highvoltage pulses is required. This study aims to compare different types of high-voltage switches commonly used in pulsed power systems including electromechanical switches, vacuum switches, gas-filled switches, triggered spark gaps and solidstate switches. The comparison study focuses on key performance parameters such as voltage handling capability, current carrying capacity, turn-on time, and repetition rates are considered to provide a comprehensive study and analysis of the switch’s suitability for different pulsed power applications. Gas-filled switches such as spark gaps, thyratrons and ignitrons have been used in pulsed power systems due to their high voltage handling capability and low switching losses. However, they suffer from a limited lifetime and require maintenance and periodic replacement. Solid-state switches, i.e. Silicon-Controlled Rectifiers (SCRs), Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) offer advantages in terms of longevity, reliability, and reduced maintenance. However, they have limitations in high-voltage applications and exhibit higher switching losses. The findings of this comparison study will assist researchers, engineers, and system designers in selecting the most appropriate high-voltage switch for pulsed power applications, considering the specific requirements and constraints of the system. This will ultimately contribute to the advancement and optimization of pulsed power technologies across a wide range of scientific, industrial, and strategic applications.

Publisher

Central Power Research Institute

Reference17 articles.

1. Gennady AM. Pulsed power. Institute of High Current Electronics, Tomsk, and Institute of Electrophysics, Ekaterinburg Russian Academy of Sciences, Russia; 2004.

2. Blum H. Pulsed power systems principle and application; 2006.

3. Lehr J, Ron P. Foundations of pulsed power technology; 2017. https://doi.org/10.1002/9781118886502

4. Martin TH, Guenther AH, Kristiansen M. Gas discharge closing switches. New York: Plenum Press; 1990.

5. Zhong Z, Rao J, Liu H, Redondo LM. Review on solidstate- based Marx generators. Plasma Science. 2021; 49(11):3625-43. https://doi.org/10.1109/TPS.2021.3121683

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3