Analysis of energy and major components in chromatographic signals for the diagnosis of prostate cancer

Author:

Soto Vergel Ángelo JosephORCID,Mendoza Luis EnriqueORCID,Medina Delgado ByronORCID

Abstract

The prostate exam is an early detection tool to prevent prostate cancer and the main diagnostic tools for obtaining signs are generally invasive. This article tries chromatographic signals from the urine of prostate cancer patients and control patients as a non-invasive examination proposal. For this purpose, methodologically, urine samples are taken, digitized in chromatograms, treated with mathematical techniques and classified. The mathematical techniques are time normalization, dead time elimination, baseline correction, noise elimination, and peak alignment. Classification techniques analyze energy, in the domain of time and frequency, and the main components in sedimentation graphs and scores. As a result, the chromatographic signal is characterized and identifies the characteristic curve that represents the signal of prostate cancer patients and control patients. The data structure shows a cluster distribution of 88.88% of the vectors for the control patients. In the case of prostate cancer patients, the distribution of data is in clusters around the area defined by control patients. This characterization demarcates signal classification regions to diagnose possible prostate cancer patients, validating the relationship between the chromatographic signal and cancer.

Publisher

Universidad Francisco de Paula Santander

Reference26 articles.

1. Á. Fajardo-Zapata and G. Jaimes-Monroy,“Conocimiento, percepción y disposición sobre el examen de próstata en hombres mayores de 40 años,” Investig. Orig., vol. 64, no. 2, pp. 223–228,2016.

2. D. Glujovsky, A. Bardach, S. García-Martí, D.Comandé, and A. Ciapponi, “PRM2 EROS: A New Software For Early Stage Of Systematic REVIEWS,”Value Heal., vol. 14, no. 7, p. A564, Nov. 2011.

3. I. Rivera et al., “Diseño de dispositivos para el diagnóstico de sarcopenia en miembro superior,”Memorias del Congr. Nac. Ing. Biomédica, vol. 2,no. 1, pp. 174–177, 2017.

4. L. Garrido-Martínez and R. I. González-Fernández, “Revista cubana de informática médica,”Rev. Cuba. Informática Médica, vol. 15, no. 2, pp.153–164, 2015.

5. E. Dugarte-Dugarte et al., “Algoritmo de bajo costo de procesamiento para la detección de potenciales tardíos ventriculares (PTV),” CLIC Conoc. Libr. y Licenciamiento, vol. 8, no. 15, pp.73–93, 2017.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3